Abstract

This paper considers the sliding-mode control for nonlinear stochastic systems modeled by Ito stochastic differential equations. It is noted that there exist state and exogenous disturbance-dependent noise in the controlled systems. By utilizing <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">infin</sub> disturbance attenuation technique, a novel sliding-mode control method is proposed such that the resultant system is asymptotically stable in probability with a prescribed <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">infin</sub> performance. Sufficient conditions for the solvability of these problems are derived via nonlinear Hamilton-Jacobi (HJ)-type inequalities. Moreover, it is shown that for a class of special nonlinear stochastic systems, the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">infin</sub> -sliding-mode control design can be obtained by solving linear matrix inequalities (LMIs). Finally, a numerical simulation example is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.