Abstract

This paper focuses on the problem of robust H∞ sliding mode observer (SMO) design for a class of Takagi–Sugeno (T–S) fuzzy descriptor systems with time-varying delay. A SMO is designed by taking the control input and the measured output into account. Then a novel integral-type sliding surface, which involves the SMO gain matrix, is constructed for the error system. By using an appropriate Lyapunov–Krasovskii functional, a delay-dependent sufficient condition is established in terms of linear matrix inequality (LMI), which guarantees the sliding mode dynamic to be robustly admissible with H∞ performance and determines the SMO gain matrix. Moreover, a sliding mode control (SMC) law is synthesized such that the reachability can be ensured. Finally, simulations are presented to show the effectiveness of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.