Abstract

This paper is concerned with the problem of dynamic output feedback control design for the cooperative adaptive cruise control (CACC) system with randomly occurring sensor saturations (ROSSs) subject to randomly occurring deception attacks (RODAs). The dynamics of the vehicle equipped with CACC system behave like a linear model in which the deviation of the position and velocity are chosen as the state variables. Sensor saturations and deception attacks are simultaneously taken into account, and two sets of Bernoulli random variables are utilized to characterize their nature of random occurrence. The main objective of this article is to develop a robust dynamic output feedback controller (RDOFC) such that, for all possible parameter uncertainties, sensor saturations as well as deception attacks, all the states can still be exponentially mean square stable and the <inline-formula><tex-math notation="LaTeX">$H_{\infty }$</tex-math></inline-formula> performance index is guaranteed. In light of the Lyapunov stability theory, a sufficient condition of the desired controller is firstly constructed, then the controller parameters are obtained relying on the solutions to a set of linear matrix inequalities (LMIs). Finally, the three-car platoon system is evaluated to validate the usefulness of the developed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.