Abstract

This paper studies the problem of robust H∞ control for discrete-time nonlinear systems presented as Takagi—Sugeno’s fuzzy models. The generalized non-parallel distributed compensation (non-PDC) law and non-quadratic Lyapunov function is constructed by the proposed homogeneouspolynomially basis-dependent matrix function (HPB-MF for abbreviation). Based on the generalized non-PDC law and non-quadratic Lyapunov function, some linear matrix inequalities (LMIs) are obtained by exploiting the possible combinations of the basis functions. These LMIs ensure the asymptotic stability of the closed-loop system and guarantee a norm bound constraint on disturbance attenuation. In addition, it is shown that the LMIs become less conservative as the degree of HPB-MF increases. The merit of the methods presented in this paper lies in their less conservatism than other methods, as shown by a numerical example borrowed from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.