Abstract

This paper deals with the problems of robust stabilization and robust H ∞ control for discrete stochastic systems with time-varying delays and time-varying norm-bounded parameter uncertainties. For the robust stabilization problem, attention is focused on the design of a state feedback controller which ensures robust stochastic stability of the closed-loop system for all admissible uncertainties, while for the robust H ∞ control problem, a state feedback controller is designed such that, in addition to the requirement of the robust stochastic stability, a prescribed H ∞ performance level is also required to be satisfied. A linear matrix inequality (LMI) approach is developed to solve these problems, and delay-dependent conditions for the solvability are obtained. It is shown that the desired state feedback controller can be constructed by solving certain LMIs. An example is provided to demonstrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.