Abstract
This paper addresses the design of robust H ∞ controllers for uncertain discrete singular systems with time-invariant uncertainty in both the state and measurement matrices. The singular system to be controlled is not assumed to be regular. A regular dynamic output feedback controller is designed such that a prescribed H ∞ performance condition is satisfied and the closed-loop poles are placed in a specified disk while the regularity, causality and stability of the closed-loop system can be guaranteed for all admissible uncertainties. The desired controller can be obtained by solving a set of matrix inequalities. A numerical example is given to demonstrate the application of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.