Abstract

This contribution presents a robust ILC control design based on guaranteed costs. By combining this ILC design with dynamic feedforward control and an observer-based disturbance compensation, the initial tracking errors in an early learning stage can be reduced. The benefits of the proposed design approach are pointed out at the example of a robust position control of a Permanent Magnet Synchronous Motor (PMSM), which is subject to uncertain model parameters. The paper is concluded with convincing experimental results from a dedicated test rig. Moreover, a comparison with a classical observer-based tracking control is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.