Abstract
Industrial robots are widely deployed to perform pick-and-place tasks at high speeds to minimize manufacturing time and boost productivity. When dealing with delicate or fragile goods, soft robotic grippers are better end effectors than rigid grippers due to their softness and safe interaction. However, high-speed motion causes the soft robotic gripper to vibrate, leading to damage of the objects or failed grasping. Soft grippers with variable stiffness are considered to be effective in suppressing vibrations by adding damping devices, but it is quite challenging to compromise between stiffness and compliance. In this article, a controller based on deep reinforcement learning is proposed to control the stiffness of the soft robotic gripper, which can accurately suppress the vibration with only a minor influence on its compliance and softness. The proposed controller is a real-time vibration control strategy, which estimates the output of the controller based on the current operating environment. To demonstrate the effectiveness of the proposed controller, experiments were done with a UR5 robotic arm. For different situations, experimental results show that the proposed controller responds quickly and reduces the amplitude of the oscillation substantially.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.