Abstract

Gesture recognition is a technology often used in human-computer interaction applications. Dynamic time warping (DTW) is one of the techniques used in gesture recognition to find an optimal alignment between two sequences. Oftentimes a pre-processing of sequences is required to remove variations due to different camera or body orientations or due to different skeleton sizes between the reference gesture sequences and the test gesture sequences. We discuss a set of pre-processing methods to make the gesture recognition mechanism robust to these variations. DTW computes a dissimilarity measure by time-warping the sequences on a per sample basis by using the distance between the current reference and test sequences. However, all body joints involved in a gesture are not equally important in computing the distance between two sequence samples. We propose a weighted DTW method that weights joints by optimizing a discriminant ratio. Finally, we demonstrate the performance of our pre-processing and the weighted DTW method and compare our results with the conventional DTW and state-of-the-art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.