Abstract
As renewable energy sources replace traditional power sources (such as thermal generators), uncertainty grows while there are fewer controllable units. To reduce operational risks and avoid frequent real-time emergency controls, a preparatory schedule of renewable generation curtailment is required. This paper proposes a novel two-stage robust generation dispatch (RGD) model, where the preparatory curtailment threshold is optimized in the pre-dispatch stage. The curtailment threshold will then influence the variation range of real-time renewable power outputs, resulting in a decision-dependent uncertainty (DDU) set. In the re-dispatch stage, the controllable units adjust their outputs within their reserve contributions to maintain power balancing. To overcome the difficulty in solving the RGD with DDU, an adaptive column-and-constraint generation (AC&CG) algorithm is developed. We prove that the proposed algorithm can generate the optimal solution in a finite number of iterations. Numerical studies show the advantages of the proposed model and algorithm and validate their practicability and scalability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.