Abstract
Purpose – The purpose of this paper is to address the synthesis and experimental application of a generalized predictive control (GPC) technique on an Orthoglide robot. Design/methodology/approach – The control strategy is composed of two control loops. The inner loop aims at linearizing the nonlinear robot dynamics using feedback linearization. The outer loop tracks the desired trajectory based on GPC strategy, which is robustified against measurement noise and neglected dynamics using Youla parameterization. Findings – The experimental results show the benefits of the robustified predictive control strategy on the dynamical performance of the Orthoglide robot in terms of tracking accuracy, disturbance rejection, attenuation of noise acting on the control signal and parameter variation without increasing the computational complexity. Originality/value – The paper shows the implementation of the robustified predictive control strategy in real time with low computational complexity on the Orthoglide robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.