Abstract

BackgroundAutism spectrum disorder (ASD) is among the most pervasive neurodevelopmental disorders, yet the neurobiology of ASD is still poorly understood because inconsistent findings from underpowered individual studies preclude the identification of robust and interpretable neurobiological markers and predictors of clinical symptoms. MethodsWe leverage multiple brain imaging cohorts and exciting recent advances in explainable artificial intelligence to develop a novel spatiotemporal deep neural network (stDNN) model, which identifies robust and interpretable dynamic brain markers that distinguish ASD from neurotypical control subjects and predict clinical symptom severity. ResultsstDNN achieved consistently high classification accuracies in cross-validation analysis of data from the multisite ABIDE (Autism Brain Imaging Data Exchange) cohort (n = 834). Crucially, stDNN also accurately classified data from independent Stanford (n = 202) and GENDAAR (Gender Exploration of Neurogenetics and Development to Advanced Autism Research) (n = 90) cohorts without additional training. stDNN could not distinguish attention-deficit/hyperactivity disorder from neurotypical control subjects, highlighting the model’s specificity. Explainable artificial intelligence revealed that brain features associated with the posterior cingulate cortex and precuneus, dorsolateral and ventrolateral prefrontal cortex, and superior temporal sulcus, which anchor the default mode network, cognitive control, and human voice processing systems, respectively, most clearly distinguished ASD from neurotypical control subjects in the three cohorts. Furthermore, features associated with the posterior cingulate cortex and precuneus nodes of the default mode network emerged as robust predictors of the severity of core social and communication deficits but not restricted/repetitive behaviors in ASD. ConclusionsOur findings, replicated across independent cohorts, reveal robust individualized functional brain fingerprints of ASD psychopathology, which could lead to more objective and precise phenotypic characterization and targeted treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.