Abstract

In this paper, the robust game model proposed by Aghassi and Bertsimas (Math Program Ser B 107:231–273, 2006) for matrix games is extended to games with a broader class of payoff functions. This is a distribution-free model of incomplete information for finite games where players adopt a robust-optimization approach to contend with payoff uncertainty. They are called robust players and seek the maximum guaranteed payoff given the strategy of the others. Consistently with this decision criterion, a set of strategies is an equilibrium, robust-optimization equilibrium, if each player’s strategy is a best response to the other player’s strategies, under the worst-case scenarios. The aim of the paper is twofold. In the first part, we provide robust-optimization equilibrium’s existence result for a quite general class of games and we prove that it exists a suitable value $$\epsilon $$ such that robust-optimization equilibria are a subset of $$\epsilon $$ -Nash equilibria of the nominal version, i.e., without uncertainty, of the robust game. This provides a theoretical motivation for the robust approach, as it provides new insight and a rational agent motivation for $$\epsilon $$ -Nash equilibrium. In the last part, we propose an application of the theory to a classical Cournot duopoly model which shows significant differences between the robust game and its nominal version.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.