Abstract
This paper addresses issues related to robust control for an airbreathing hypersonic flight vehicle. Owing to aero-propulsion couplings caused by the unique structure shape, the model of the vehicle is greatly nonlinear and complex, which presents an enormous technical challenge for control. The nonlinear model is transformed into a linear fractional transformation (LFT) model, and a robust gain-scheduling controller based on linear parameter-varying control (LPV) with full block multipliers is obtained. Simulations illustrate great improvements of the dynamic performance in closed-loop system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.