Abstract

This paper addresses issues related to robust control for an airbreathing hypersonic flight vehicle. Owing to aero-propulsion couplings caused by the unique structure shape, the model of the vehicle is greatly nonlinear and complex, which presents an enormous technical challenge for control. The nonlinear model is transformed into a linear fractional transformation (LFT) model, and a robust gain-scheduling controller based on linear parameter-varying control (LPV) with full block multipliers is obtained. Simulations illustrate great improvements of the dynamic performance in closed-loop system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call