Abstract

Principal component analysis (PCA) is a favorite tool in chemometrics for data compression and information extraction. PCA finds linear combinations of the original measurement variables that describe the significant variations in the data. However, it is well-known that PCA, as with any other multivariate statistical method, is sensitive to outliers, missing data, and poor linear correlation between variables due to poorly distributed variables. As a result data transformations have a large impact upon PCA. In this regard one of the most powerful approaches to improve PCA appears to be the fuzzification of the matrix data, thus diminishing the influence of outliers. In this paper we discuss a robust fuzzy PCA algorithm (FPCA). The new algorithm is illustrated on a data set concerning interaction of carbon-hydrogen bonds with transition metal-oxo bonds in molybdenum complexes. Considering, for example, a two component model, FPCA accounts for 97.20% of the total variance and PCA accounts only for 69.75%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.