Abstract
A robust fuzzy neural network (RFNN) sliding-mode control based on computed torque control design for a two-axis motion control system is proposed in this paper. The two-axis motion control system is an x-y table composed of two permanent-magnet linear synchronous motors. First, a single-axis motion dynamics with the introduction of a lumped uncertainty including cross-coupled interference between the two-axis mechanism is derived. Then, to improve the control performance in reference contours tracking, the RFNN sliding-mode control system is proposed to effectively approximate the equivalent control of the sliding-mode control method. Moreover, the motions at x-axis and y-axis are controlled separately. Using the proposed control, the motion tracking performance is significantly improved, and robustness to parameter variations, external disturbances, cross-coupled interference, and friction force can be obtained as well. Furthermore, the proposed control algorithms are implemented in a TMS320C32 DSP-based control computer. From the simulated and experimental results due to circle and four leaves reference contours, the dynamic behaviors of the proposed control systems are robust with regard to uncertainties
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.