Abstract

Sliding-mode control (SMC) has been widely used in grid-connected converter system (GCC) systems because of its robustness to parameter variations and external disturbances. However, chattering in SMC may deteriorate the tracking accuracy and can easily excite high-frequency unmodeled dynamics. To solve this problem, this article presents a fuzzy-fractional-order nonsingular terminal sliding-mode controller (Fuzzy-FONTSMC) for the grid current control of LCL–GCCs. First, the system modeling, design of the integer-order NTSMC controller, and state estimation based on the Kalman filter to minimize the sampling sensors are described. Second, the Fuzzy-FONTSMC controller is introduced for optimal fraction-order selection and chattering mitigation, this controller exhibits fast convergence with high tracking accuracy and strong robustness. Finally, the Lyapunov theorem is used to analyze the system stability. Experimental comparisons on a 10-kVA laboratory prototype validate the superior performance and effectiveness of the proposed method under many scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call