Abstract

BackgroundMany widely used myocardial T1 mapping sequences use breath-hold acquisitions that limit the precision of calculated T1 maps. The SAturation-recovery single-SHot Acquisition (SASHA) sequence has high accuracy with robustness against systematic confounders, but has poorer precision compared to the commonly used MOdified Look-Locker Inversion recovery (MOLLI) sequence. We propose a novel method for generating high-contrast SASHA images to enable a robust image registration approach to free-breathing T1 mapping with high accuracy and precision.MethodsHigh-contrast (HC) images were acquired in addition to primary variable flip angle (VFA) SASHA images by collecting an additional 15 k-space lines and sharing k-space data with the primary image. The number of free-breathing images and their saturation recovery times were optimized through numerical simulations. Accuracy and precision of T1 maps using the proposed SASHA-HC sequence was compared in 10 volunteers at 1.5 T to MOLLI, a breath-hold SASHA-VFA sequence, and free-breathing SASHA-VFA data processed using conventional navigator gating and standard image registration. Free-breathing T1 maps from 15 patients and 10 volunteers were graded by blinded observers for sharpness and artifacts.ResultsDifference images calculated by subtracting HC and primary SASHA images had greater tissue-blood contrast than the primary images alone, with a 3× improvement for 700 ms TS saturation recovery images and a 6× increase in tissue-blood contrast for non-saturated images. Myocardial T1s calculated in volunteers with free-breathing SASHA-HC were similar to standard breath-hold SASHA-VFA (1156.1 ± 28.1 ms vs 1149.4 ± 26.5 ms, p >0.05). The standard deviation of myocardial T1 values using a 108 s free-breathing SASHA-HC (36.2 ± 3.1 ms) was 50 % lower (p <0.01) than breath-hold SASHA-VFA (72.7 ± 8.0 ms) and 34 % lower (p <0.01) than breath-hold MOLLI (54.7 ± 5.9 ms). T1 map quality scores in volunteers were higher with SASHA-HC (4.7 ± 0.3 out of 5) than navigator gating (3.6 ± 0.4, p <0.01) or normal registration (3.7 ± 0.4, p <0.01). SASHA-HC T1 maps had comparable precision to breath-hold MOLLI using a retrospectively down-sampled 30 s free-breathing acquisition and 30 % higher precision with a 60 s acquisition.ConclusionsHigh-contrast SASHA images enable a robust image registration approach to free-breathing T1 mapping. Free-breathing SASHA-HC provides accurate T1 maps with higher precision than MOLLI in acquisitions longer than 30 s.Electronic supplementary materialThe online version of this article (doi:10.1186/s12968-016-0267-9) contains supplementary material, which is available to authorized users.

Highlights

  • Many widely used myocardial T1 mapping sequences use breath-hold acquisitions that limit the precision of calculated T1 maps

  • Saturation-recovery based sequence such SAturation-recovery single-SHot Acquisition (SASHA) [21], Saturation Method using Adaptive Recovery Times (SMART1Map) [22], and SAturation Pulse Prepared Heart rate independent Inversion-REcovery sequence (SAPPHIRE) [23] are more robust to these confounders, but their adoption has been limited by poorer precision which results from reduced dynamic range and signalto-noise compared to the inversion-recovery based MOdified Look-Locker Inversion recovery (MOLLI) sequence [20, 24]

  • We propose to enable free-breathing saturation recovery single-shot acquisition (SASHA) T1 mapping using image registration by acquiring additional secondary images with higher tissue-blood contrast to improve registration performance

Read more

Summary

Introduction

Many widely used myocardial T1 mapping sequences use breath-hold acquisitions that limit the precision of calculated T1 maps. The SAturation-recovery single-SHot Acquisition (SASHA) sequence has high accuracy with robustness against systematic confounders, but has poorer precision compared to the commonly used MOdified Look-Locker Inversion recovery (MOLLI) sequence. While the MOdified Look-Locker Inversion recovery (MOLLI) technique [15, 16] has gained widespread adoption, it is sensitive to factors such as T2 [17], magnetization transfer [18], and off-resonance [19], and changes in any of these confounders result in changes in measured T1 values [20]. Saturation-recovery based sequence such SAturation-recovery single-SHot Acquisition (SASHA) [21], Saturation Method using Adaptive Recovery Times (SMART1Map) [22], and SAturation Pulse Prepared Heart rate independent Inversion-REcovery sequence (SAPPHIRE) [23] are more robust to these confounders, but their adoption has been limited by poorer precision which results from reduced dynamic range and signalto-noise compared to the inversion-recovery based MOLLI sequence [20, 24]. Higher precision techniques with less variability are needed to reliably detect subtle T1 changes in individual patients and to better identify focal T1 abnormalities

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.