Abstract

This paper deals with the problem of robust H ∞ state feedback stabilization for uncertain switched linear systems with state delay. The system under consideration involves time delay in the state, parameter uncertainties and nonlinear uncertainties. The parameter uncertainties are norm-bounded time-varying uncertainties which enter all the state matrices. The nonlinear uncertainties meet with the linear growth condition. In addition, the impulsive behavior is introduced into the given switched system, which results a novel class of hybrid and switched systems called switched impulsive control systems. Using the switched Lyapunov function approach, some sufficient conditions are developed to ensure the globally robust asymptotic stability and robust H ∞ disturbance attenuation performance in terms of certain linear matrix inequalities (LMIs). Not only the robustly stabilizing state feedback H ∞ controller and impulsive controller, but also the stabilizing switching law can be constructed by using the corresponding feasible solution to the LMIs. Finally, the effectiveness of the algorithms is illustrated with an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.