Abstract

SummaryThis paper addresses the robust formation control problem of multiple rigid bodies whose kinematics and dynamics evolve on the Lie group SE(3). First, it is assumed that all followers have access to the state information of a virtual leader. Then, a novel adaptive super‐twisting sliding mode control with an intrinsic proportional‐integral‐derivative sliding surface is proposed for the formation control problem of multiagent system using a virtual structure (VS) approach. The advantages of this control scheme are twofold: elimination of the chattering phenomenon without affecting the control performance and no requirement of prior knowledge about the upper bound of uncertainty/disturbance due to adaptive‐tuning law. Since the VS method is suffering from the disadvantages of centralized control, in the second step, considering a network as an undirected connected graph, we assume that only a few agents have access to the state information of the leader. Afterward, using the gradient of modified error function, a distributed adaptive velocity‐free consensus‐based formation control law is proposed where reduced‐order observers are introduced to remove the requirements of velocity measurements. Furthermore, to relax the requirement that all agents have access to the states of the leader, a distributed finite‐time super‐twisting sliding mode estimator is proposed to obtain an accurate estimation of the leader's states in a finite time for each agent. In both steps, the proposed control schemes are directly developed on the Lie group SE(3) to avoid singularity and ambiguities associated with the attitude representations. Numerical simulation results illustrated the effectiveness of the proposed control schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.