Abstract
In the mammalian cortex, the dorsal telencephalon exhibits a characteristic stratified structure. We previously reported that three-dimensional (3D) culture of mouse ES cells (mESCs) can efficiently generate cortical neuroepithelium (NE) and layer-specific cortical neurons. However, the cortical NE generated in this mESC culture was structurally unstable and broke into small neural rosettes by culture day 7, suggesting that some factors for reinforcing the structural integrity were missing. Here we report substantial supporting effects of the extracellular matrix (ECM) protein laminin on the continuous formation of properly polarized cortical NE in floating aggregate culture of mESCs. The addition of purified laminin and entactin (a laminin-associated protein), even at low concentrations, stabilized the formation of continuous cortical NE as well as the maintenance of basement membrane and prevented rosette formation. Treatment with the neutralizing ß1-integrin antibody impaired the continuous NE formation. The stabilized cortical NE exhibited typical interkinetic nuclear migration of cortical progenitors, as seen in the embryonic cortex. The laminin-treated cortical NE maintained a continuous structure even on culture days 12 and 15, and contained ventricular, basal-progenitor, cortical-plate and Cajal-Retzius cell layers. The cortical NE in this culture was flanked by cortical hem-like tissue. Furthermore, when Shh was added, ventral telencephalic structures such as lateral ganglionic eminence–like tissue formed in the region adjacent to the cortical NE. Thus, our results indicate that laminin-entactin ECM promotes the formation of structurally stable telencephalic tissues in 3D ESC culture, and supports the morphogenetic recapitulation of cortical development.
Highlights
The brain is the most complex organ in the vertebrate body
The cerebral cortex is the largest portion of the pallium, whereas the subpallium is further regionalized into the lateral ganglionic eminance (LGE; giving rise to striatum) and the medial ganglionic eminance (MGE; giving rise to globus pallidus) [1,2,3]
We demonstrate that laminin-containing extracellular matrix (ECM) proteins have strong promoting effects on cortical NE formation and maintenance in 3D self-organizing culture of mouse ES cells (mESCs)
Summary
The brain is the most complex organ in the vertebrate body. During early neural development, the anlage of the central nervous system (CNS) forms as the neural plate, consisting of a monolayered neuroectoderm within the dorsal ectoderm. The neural plate invaginates and rolls up into the neural tube, which subdivides into the prosencephalon (forebrain), mesencephalon (midbrain), rhombencephalon (hindbrain) and spinal cord. The forebrain comprises the telencephalon and diencephalon. In addition to this anterior-posterior (AP) specification, the neural tube is patterned into the roof plate (dorsal-most), alar plate (dorsal), basal plate (ventral) and floor plate (ventral-most) along the dorsal-ventral (DV) axis. The DV pattern in the telencephalon is complex and this brain region is subdivided into the dorsal telencephalon (pallium) and ventral telencephalon (subpallium). The cerebral cortex is the largest portion of the pallium, whereas the subpallium is further regionalized into the lateral ganglionic eminance (LGE; giving rise to striatum) and the medial ganglionic eminance (MGE; giving rise to globus pallidus) [1,2,3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.