Abstract

In this article, we develop a robust position/force controller based on the impedance approach without requiring exact knowledge of the robot dynamics. The controller is constructed so that a desired positional trajectory can be followed along the surface of the environment while the forces exerted on the environmental surface are regulated according to a target impedance. A global uniform ultimate boundedness result is ob tained for the position tracking error and the force regulation error (i.e., the error between the actual manipulator impedance and the desired target impedance). The controller only requires measurement of the end-effector force, joint velocity, and joint position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.