Abstract

Homopolymers of 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (V4D4), 2-(perfluorohexyl)ethyl acrylate (PFHEA) and 2-(perfluoroalkyl)ethyl methacrylate (PFEMA) and their copolymers were synthesized via initiated chemical vapor deposition (iCVD). All coatings exhibited excellent adhesion to substrates. The corrosion resistance of iCVD coatings was investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. In addition, chemical durability of various organic solvents and adhesion to the substrate were also evaluated. Tafel polarization measurements in 5 wt% NaCl solution revealed that the corrosion rates as low as 0.002 mpy on zinc substrates can be reached with 250-nm-thick iCVD-synthesized polymers which is lower than previously reported polymer coatings and more than three orders of magnitude lower than bare zinc. EIS analysis coupled with equivalent electric circuits model confirmed that poly(V4D4) and poly(PFHEA) homopolymers show extremely high protection efficiencies (~ 99%) on zinc, while poly(V4D4-co-PFHEA) copolymer with slightly lower corrosion efficiency (85–91%) provides a better anticorrosion barrier with weight loss reduction by 57 and 45% for copper and zinc, respectively, and with improved chemical and mechanical properties. The results indicate that iCVD process enables fabrication of finely tuned fluorinated siloxane copolymer conformal coatings for corrosion protection on a variety of substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.