Abstract

Inspired by the hierarchical structure of the mastoid on the micrometer and nanometer scale and the waxy crystals of the mastoid on natural lotus surfaces, a facile one‐step hydrothermal strategy is developed to coat flower‐like hierarchical TiO2 micro/nanoparticles onto cotton fabric substrates (TiO2@Cotton). Furthermore, robust superhydrophobic TiO2@Cotton surfaces are constructed by the combination of hierarchical structure creation and low surface energy material modification, which allows versatility for self‐cleaning, laundering durability, and oil/water separation. Compared with hydrophobic cotton fabric, the TiO2@Cotton exhibits a superior antiwetting and self‐cleaning property with a contact angle (CA) lager than 160° and a sliding angle lower than 5°. The superhydrophobic TiO2@Cotton shows excellent laundering durability against mechanical abrasion without an apparent reduction of the water contact angle. Moreover, the micro/nanoscale hierarchical structured cotton fabrics with special wettability are demonstrated to selectively collect oil from oil/water mixtures efficiently under various conditions (e.g., floating oil layer or underwater oil droplet or even oil/water mixtures). In addition, it is expected that this facile strategy can be widely used to construct multifunctional fabrics with excellent self‐cleaning, laundering durability, and oil/water separation. The work would also be helpful to design and develop new underwater superoleophobic/superoleophilic materials and microfluidic management devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.