Abstract
This paper addresses the problem of robust motion control of a Differentially Driven Wheeled Mobile Robot (DWMR). Using the fact that DWMRs are differentially flat systems, the motion control design is relatively simplified by defining the desired motions of the robot in the flat output space of the system. The accurate and the robust trajectories tracking are provided firstly, by imposing the sliding manifold from the flat output space of the system. Secondly, an adaptive gain discontinuous control law -adaptive sliding mode controller- is introduced to drive to zero in finite time such sliding manifold, despite model uncertainties and external disturbances. The system stability is proven using the Lyapunov theory. Compared with classical Feedback control algorithms and using the laboratory test prototype, Pioneer 3DX, simulation and practical tests are presented to illustrate the performances of the proposed approach in the presence of unknown external disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.