Abstract

A robust fixed-lag smoothing approach is proposed in the case there is a mismatch between the nominal model and the actual model. The resulting robust smoother is characterized by a dynamic game between two players: one player selects the least favorable model in a prescribed ambiguity set, while the other player selects the fixed-lag smoother minimizing the smoothing error with respect to least favorable model. We propose an efficient implementation of the proposed smoother. Moreover, we characterize the corresponding least favorable model over a finite time horizon. Finally, we test the robust fixed-lag smoother in two examples. The first one regards a target tracking problem, while the second one regards a parameter estimation problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.