Abstract

In this paper, the problem of robust finite-time non-fragile sampled-data control is investigated for uncertain flexible spacecraft model with stochastic actuator faults based on Takagi-Sugeno (T-S) fuzzy model approach. Specifically, the existence of stochastic actuator faults are described by using the Bernoulli distribution. On the basis of the input-delay approach, the sampled-data system is reformulated to a continuous time-varying delay system. Further, based on Lyapunov functional approach and linear matrix inequality technique, sufficient conditions are derived for the existence of the desired state feedback controller ensuring the stochastic finite-time bounded with prescribed H∞ performance index. Finally, numerical simulations are provided for the practical flexible spacecraft control system to verify the effectiveness and applicability of the proposed control design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.