Abstract
Recently, more and more small-scale renewable generation sources based distributed generators are integrated to the existing power network through power electronic-based converters. Microgrid has been proposed as a solution to meet the challenges posed by highly intermittent renewable generations. To address the fast response and complex operating conditions of various inverters in an autonomous microgrid, this paper proposes a robust finite-time control algorithm for frequency/voltage regulation and active/reactive power control. The major advantages of the proposed control algorithm include, being robust and stable against various load disturbances, unmodeled dynamics and system parameter perturbations; enabling flexible convergence time according to user preferences and different operating conditions' requirements. The finite-time convergence of the robust control algorithm is guaranteed through rigorous analysis and the balance between control accuracy and chattering suppression is investigated. Simulation results demonstrate the effectiveness of the proposed robust finite-time control algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.