Abstract

This paper is concerned with the problem of robust finite frequency (FF) H∞ filtering for uncertain two-dimensional (2-D) discrete-time systems in the Fornasini–Marchesini local state-space (FM LSS) model with polytopic uncertain parameters. The goal of the paper is to design filters such that the FF H∞ norm of the filtering error system has a specified upper bound for all uncertainties. In light of a recently developed generalized bounded real lemma, a linear matrix inequality-based approach is proposed for robust FF H∞ filter analysis and design. It is demonstrated that the presented approach to robust FF H∞ filter design covers the latest standard H∞ filtering result. Moreover, it is shown that the existing results specialized for the Roesser model, when applied to the FM LSS model through a model transformation, are much more restrictive than the proposed results in the paper, further justifying this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.