Abstract
In this brief, we consider robust filtering problems for uncertain discrete-time systems. The uncertain plants under consideration possess nonlinear fractional transformation (NFT) representations which are a generalization of the classical linear fractional transformation (LFT) representations. The proposed NFT is more practical than the LFT, and moreover, it leads to substantial performance gains as well as computational savings. For this class of systems, we derive linear-matrix inequality characterizations for H/sub 2/, & H/sub /spl infin//, and mixed filtering problems. Our approach is finally validated through a number of examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Express Briefs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.