Abstract

This paper is concerned with the problem of robust filter design for a class of discrete-time networked nonlinear systems. The Takagi-Sugeno fuzzy model is employed to represent the underlying nonlinear dynamics. A multi-channel communication scheme that involves a channel switching phenomenon described by a Markov chain is proposed for data transmission. Two typical communication imperfections, network-induced time-varying delays and packet dropouts are considered in each channel. The objective of this paper is to design an admissible filter such that the filter error system is stochastically stable and ensures a prescribed disturbance attenuation level bound. Based on the Lyapunov-Krasovskii functional method and matrix inequality techniques, sufficient conditions on the existence of the desired filter are obtained. A numerical example is provided to illustrate the effectiveness of the proposed design approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.