Abstract

In this paper, we investigate a robust filter-and-forward (FF) beamforming design for two-waymulti-antenna relaying networks, where multiple relays assist two terminals to exchange information. With Gaussian distributed channel errors, the proposed robust beamforming design aims at maximizing the signal-to-interference-plus-noise-ratio (SINR) under individual transmit power constraints at each relay. Exploiting the elegant convex optimization mathematical tools, the optimization problem can be efficiently solved. Finally, simulation results demonstrate that the proposed robust beamformer reduces the sensitivity of the two-way multi-antenna relay networks to channel estimation errors, and outperforms the algorithm with estimated channels only. Moreover, the length of robust beamformer also influences the system performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call