Abstract

The purpose of this study is to provide a new method for detecting fetal QRS complexes from non-invasive fetal electrocardiogram (fECG) signal. Despite most of the current fECG processing methods which are based on separation of fECG from maternal ECG (mECG), in this study, fetal heart rate (FHR) can be extracted with high accuracy without separation of fECG from mECG. Furthermore, in this new approach thoracic channels are not necessary. These two aspects have reduced the required computational operations. Consequently, the proposed approach can be efficiently applied to different real-time healthcare and medical devices. In this work, a new method is presented for selecting the best channel which carries strongest fECG. Each channel is scored based on two criteria of noise distribution and good fetal heartbeat visibility. Another important aspect of this study is the simultaneous and combinatorial use of available fECG channels via the priority given by their scores. A combination of geometric features and wavelet-based techniques was adopted to extract FHR. Based on fetal geometric features, fECG signals were divided into three categories, and different strategies were employed to analyze each category. The method was validated using three datasets including Noninvasive fetal ECG database, DaISy and PhysioNet/Computing in Cardiology Challenge 2013. Finally, the obtained results were compared with other studies. The adopted strategies such as multi-resolution analysis, not separating fECG and mECG, intelligent channels scoring and using them simultaneously are the factors that caused the promising performance of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call