Abstract

The origin of the ferromagnetism in metal-free graphitic materials has been a decade-old puzzle. The possibility of long-range magnetic order in graphene has been recently questioned by the experimental findings that point defects in graphene, such as fluorine adatoms and vacancies, lead to defect-induced paramagnetism but no magnetic ordering down to 2 K. It remains controversial whether collective magnetic order in graphene can emerge from point defects at finite temperatures. This work provides a new framework for understanding the ferromagnetism in hydrogenated graphene, highlighting the key contribution of the spin-polarized pseudospin as a “mediator” of long-range magnetic interactions in graphene. Using first-principles calculations of hydrogenated graphene, we found that the unique ‘zero-energy’ position of H-induced quasilocalized states enables notable spin polarization of the graphene’s sublattice pseudospin. The pseudospin-mediated magnetic interactions between the H-induced magnetic moments stabilize the two-dimensional ferromagnetic ordering with Curie temperatures of Tc = nH × 34,000 K for the atom percentage nH of H adatoms. These findings show that atomic-scale control of hydrogen adsorption on graphene can give rise to a robust magnetic order.

Highlights

  • We found that η is always negative; for PA = PB, η is constant with η = −1, while for the case of PA ≠ PB, it gradually increases in magnitude with increasing T

  • From the condition of no net magnetization on each sublattice at Tc, we obtained η(Tc)

Read more

Summary

Introduction

Which was calculated from the spin-polarized DFT calculations to determine JLARFM.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.