Abstract

Profiting from the powerful feature extraction and representation capabilities of deep learning (DL), aerial image semantic segmentation based on deep neural networks (DNNs) has achieved remarkable success in recent years. Nevertheless, the security and robustness of DNNs deserve attention when dealing with safety-critical earth observation tasks. As a typical attack pattern in adversarial machine learning (AML), backdoor attacks intend to embed hidden triggers in DNNs by poisoning training data. The attacked DNNs behave normally on benign samples, but when the hidden trigger is activated, its prediction is modified to a specified target label. In this article, we systematically assess the threat of backdoor attacks to aerial image semantic segmentation tasks. To defend against backdoor attacks and maintain better semantic segmentation accuracy, we construct a novel robust generative adversarial network (RFGAN). Motivated by the sensitivity of human visual systems to global and edge information in images, RFGAN designs the robust global feature extractor (RobGF) and the robust edge feature extractor (RobEF) that force DNNs to learn global and edge features. Then, RFGAN uses robust global and edge features as guidance to obtain benign samples by the constructed generator, and the discriminator to obtain semantic segmentation results. Our method is the first attempt to address the backdoor threat to aerial image semantic segmentation by constructing the robust DNNs model architecture. Extensive experiments on real-world scenes aerial image benchmark datasets demonstrate that the constructed RFGAN can effectively defend against backdoor attacks and achieve better semantic segmentation results compared with the existing state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call