Abstract
ABSTRACTUltra-high dimensional data arise in many fields of modern science, such as medical science, economics, genomics and imaging processing, and pose unprecedented challenge for statistical analysis. With such rapid-growth size of scientific data in various disciplines, feature screening becomes a primary step to reduce the high dimensionality to a moderate scale that can be handled by the existing penalized methods. In this paper, we introduce a simple and robust feature screening method without any model assumption to tackle high dimensional censored data. The proposed method is model-free and hence applicable to a general class of survival models. The sure screening and ranking consistency properties without any finite moment condition of the predictors and the response are established. The computation of the proposed method is rather straightforward. Finite sample performance of the newly proposed method is examined via extensive simulation studies. An application is illustrated with the gene association study of the mantle cell lymphoma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.