Abstract

Unsupervised feature learning with deep networks has been widely studied in the recent years. Despite the progress, most existing models would be fragile to non-Gaussian noises and outliers due to the criterion of mean square error (MSE). In this paper, we propose a robust stacked autoencoder (R-SAE) based on maximum correntropy criterion (MCC) to deal with the data containing non-Gaussian noises and outliers. By replacing MSE with MCC, the anti-noise ability of stacked autoencoder is improved. The proposed method is evaluated using the MNIST benchmark dataset. Experimental results show that, compared with the ordinary stacked autoencoder, the R-SAE improves classification accuracy by 14% and reduces the reconstruction error by 39%, which demonstrates that R-SAE is capable of learning robust features on noisy data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.