Abstract

This paper focuses on the problem of fault-tolerant controller (FTC) design for uncertain networked control systems (NCSs) with random delays and actuator faults. A new fault model is proposed to represent more class of actuator faults. More precisely, the NCSs with random delays and the possible actuator faults are modeled as a Markovian jump system (MJS) with incomplete transition probabilities (TPs) and then LMI-based sufficient conditions are derived to ensure the stochastic stability of the closed-loop system. The sufficient conditions are constructed to synthesize the mode-dependent static-output feedback (SOF) control laws. Feasibility and reliability of the proposed FTC against actuator faults are indicated through simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.