Abstract

This paper addresses the robust fault-tolerant control problem for a class of uncertain nonlinear switched systems with actuator saturation. Our aim is to design a switching law and a robust fault-tolerant control law for guaranteeing that the closed-loop system is asymptotically stabilizable, while at the same time the attraction domain estimation is as large as possible. By using the multiple Lyapunov functions method, sufficient conditions for robust fault-tolerant stabilisation are proposed for the closed-loop system. Then, when some scalar parameters are given in advance, the problem of fault-tolerant controller design and attraction domain estimation is transformed into a convex optimisation problem with linear matrix inequality (LMI) constraints. Finally the validity of the proposed design method is verified by a numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.