Abstract

AbstractAir data probes provide essential sensing capabilities to aircraft. The loss or corruption of air data measurements due to sensor faults jeopardizes an aircraft and its passengers. To address such faults, sensor hardware redundancy is typically combined with a voting system to detect and discard erroneous measurements. This approach relies on redundancy, which may lead to unacceptable increases in system weight and cost. This paper presents an alternative, model-based approach to fault detection for a non-redundant air data system. The model-based fault detection strategy uses robust linear filtering methods to reject exogenous disturbances, e.g. wind, and provide robustness to model errors. The proposed algorithm is applied to NASA's Generic Transport Model aircraft with an air data system modeled based on manufacturer data provided by Goodrich Corporation. The fault detection filters are designed using linearized models at one flight condition. The detection performance is evaluated at a particular reference flight condition using linear analysis and nonlinear simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.