Abstract

This paper deals with the problem of detecting faults in nonlinear networked control systems. The considered system is the state space models of time-varying systems in which the upper and lower bounds of delay are known. Sector-bounded condition is exploited to overcome the nonlinear term. It is assumed that data packet dropouts occur during data transmission, which here is modeled as Bernoulli-distributed white sequences. For fault detection, an $$H_{-} /H_{\infty }$$ performance index is utilized to design an observer such that the residual signal is much sensitive to faults and less sensitive to disturbance. The Lyapunov–Krasovskii approach is exploited to ensure the stability of the designed observer. The obtained results for observer design are modeled as linear matrix inequalities. Finally, a numerical example and a practical example of engineering systems are adopted to illustrate the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.