Abstract

This paper studies the problem of actuator fault estimation for a class of T-S fuzzy Markovian jumping systems, which is subject to mode-dependent interval time-varying delays and norm-bounded external disturbance. Based on the given fast adaptive estimation algorithm and by employing a novel Lyapunov–Krasovskii function candidate, a robust fault estimation scheme is proposed to estimate faults whose derivative is bounded. With this improved method, the proposed fault estimator minimizes the effect of disturbance on the estimation error and reduces the conservatism of systems stability results simultaneously. To be specific, an improved mode-dependent criterion for the existence of the fault estimation observer is established to guarantee the error dynamic system to be stochastically stable with a prescribed H ∞ performance and reduce the conservatism of designing procedure. Finally, three numerical examples are given to show the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.