Abstract
The paper presents a method of parameters estimation for artificial neural network based on fuzzy inference system (ANNBFIS). It is based on deterministic annealing, e-insensitive learning by solving a system of linear inequalities and robust fuzzy c-means clustering. The proposed algorithm allows to improve the neuro-fuzzy modelling quality by increasing the generalisation ability and outliers robustness. To find the unknown number of fuzzy rules we proposed the procedure of robust clusters merging. The performance of the learning method is demonstrated through the benchmark sunspot prediction problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Information and Database Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.