Abstract

In this note, the global exponential stability of discrete-time switched systems under arbitrary switching is investigated. First, for discrete-time switched nonlinear systems, the global exponential stability is found to be equivalent to the existence of an M-step sequence with sufficient length and a family of Lyapunov functions, and then a stability criterion is proposed for the nominal linear case in the framework of quadratic Lyapunov function. In order to extend the stability criterion to handle uncertainties, an equivalent condition which has a promising feature that is convex in system matrices is derived, leading to a robust stability criterion for uncertain discrete-time switched linear systems. Moreover, also taking the advantage of the convex feature, the disturbance attenuation performance in the sense of ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -gain is studied. Several numerical examples are provided to illustrate our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.