Abstract
A critical challenge in temporal planning is robustly dealing with non-determinism, e.g., the durational uncertainty of a robot's activity due to slippage or other unexpected influences. Recent advances show that robustness is a better measure of solution quality than traditional metrics such as flexibility. This paper introduces the Robust Execution Problem for finding maximally robust dispatch strategies for general probabilistic temporal planning problems. While generally intractable, we introduce approximate solution techniques — one that can be computed statically prior to the start of execution with robustness guarantees and one that dynamically adjusts to opportunities and setbacks during execution. We show empirically that our dynamic approach outperforms all known approaches in terms of execution success rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.