Abstract

Spatial bandwidth limitations frequently introduce large biases into the estimated values of rms roughness and autocorrelation length that are extracted from topography data on random rough surfaces. The biases can be particularly severe for focus-variation microscopy data because of the reduced lateral resolution (and therefore dynamic range) inherent in the technique. In this paper, we describe a measurement protocol—something similar to a deconvolution algorithm—that greatly reduces these biases. The measurement protocol is developed for the case of surfaces that are isotropic, and whose topography displays an autocovariance function that is exponential, with a single autocorrelation length. The protocol is first validated against Monte Carlo-generated mock surfaces of this form that have been filtered so as to simulate the lateral resolution and field-of-view limits of a particular commercial focus-variation microscope. It is found that accurate values of roughness and autocorrelation length can be extracted over a four octave range in autocorrelation length by applying the protocol, whereas errors without applying the protocol are a minimum of 30% even at the absolute optimum autocorrelation length. Then, microscopy data on eleven examples of rough, outdoor building materials are analyzed using the protocol. Even though the samples were not in any way selected to conform to the model’s assumptions, we find that applying the protocol yields extracted values of roughness and autocorrelation length for each surface that are highly consistent among datasets obtained at different magnifications (i.e. datasets obtained with different spatial bandpass limits).

Highlights

  • This content has been downloaded from IOPscience

  • You may be interested in: Super-resolution microscopy of single atoms in optical lattices Andrea Alberti, Carsten Robens, Wolfgang Alt et al Estimating the resolution of a commercial OCT system Peter D Woolliams and Peter H Tomlins Open questions in surface topography measurement: a roadmap σ

Read more

Summary

Introduction

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2016 Surf. Robust evaluation of statistical surface topography parameters using focus-variation microscopy

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.