Abstract

The aim of this study is to estimate the robust survival function for the Weibull distribution. Since the survival function of Weibull distribution is based on the parameters, we consider two robust and explicit Weibull parameter estimators proposed by Boudt et al. (2011). The quantile and the quantile least squares which are all robust to censored data is used as an alternative to the maximum likelihood estimation of the Weibull parameters. The proposed estimators are applied to Hodgin’s disease data which produces smaller variances for the robust survival function. The advantage of new methods is that they are numerically explicit in applications. Monte Carlo simulation is performed to compare the behaviours of the proposed robust estimators in the presence of right, left and interval censored observations considering different censoring rates. The simulation results show that the proposed robust estimators are better than the maximum likelihood estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.