Abstract

AbstractThis paper describes a robust method for estimating pigment distributions on a skin surface from multiband images. The spatial distributions of the pigments such as melanin, oxy-hemoglobin and deoxy-hemoglobin give rise to a color texture. The distributions are estimated by using the Kubelka-Munk theory. The accuracy of estimating the pigment distributions is affected by a fine texture of sulcus cutis and a broad texture of shade caused by three-dimensional body shape. In order to separate these textures from the color texture, wavelet-based multi-resolution analysis (MRA) is applied to the multiband images before the pigment estimation, because the textures of sulcus cutis and shade predominantly have low and high spatial frequency components in the multiband skin images, respectively. Realistic skin image is synthesized from modified pigment distributions with additional features such as stain, inflammation and bruise by changing the concentrations of melanin, oxy-hemoglobin and deoxy-hemoglobin, respectively. The experimental results of skin image synthesis show good feasibility of the proposed method.KeywordsSkinPigment distribution estimationMultiband imageThe Kubelka-Munk theoryMulti-resolution analysisSkin image synthesis

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.