Abstract
Understanding the distribution of hydrogeological properties of the aquifers is crucial for sustainable groundwater resource development. This research explores the application of deep autoencoder neural networks (AE-NN), assisted with global optimization methods for estimating hydrogeological parameters in the Quaternary aquifer system in the Debrecen area, Hungary. Traditional methods for estimating aquifer parameters typically depend on field experiments and laboratory analyses, which are both costly and time-consuming, and often fail to account for the heterogeneity of groundwater formations. In this study, deep AE-NN models are trained to extract latent space (LS) representations that capture key features from the available well logs, including spontaneous potential (SP), natural gamma ray (NGR), shallow resistivity (RS), and deep resistivity (RD). The LS log is then correlated with shale volume and hydraulic conductivity, as determined by the Larionov and Csókás methods, respectively. Regression analysis revealed a Gaussian relationship between the LS log and shale volume and a negative nonlinear relationship with hydraulic conductivity. Global optimization methods, including simulated annealing (SA) and particle swarm optimization (PSO), were used to refine the regression parameters, enhancing the predictive capabilities of the models. The results demonstrated that AE-NN assisted with global optimization methods can be effectively used to estimate shale volume and hydraulic conductivity, proposing a novel and independent approach for estimating hydrogeological parameters critical to groundwater flow and contaminant transport modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.