Abstract
In order to evaluate the impact of a policy intervention on a group of units over time, it is important to correctly estimate the average treatment effect (ATE) measure. Due to lack of robustness of the existing procedures of estimating ATE from panel data, in this paper, we introduce a robust estimator of the ATE and the subsequent inference procedures using the popular approach of minimum density power divergence inference. Asymptotic properties of the proposed ATE estimator are derived and used to construct robust test statistics for testing parametric hypotheses related to the ATE. Besides asymptotic analyses of efficiency and power, extensive simulation studies are conducted to study the finite-sample performances of our proposed estimation and testing procedures under both pure and contaminated data. The robustness of the ATE estimator is further investigated theoretically through the influence function analyses. Finally our proposal is applied to study the long-term economic effects of the 2004 Indian Ocean earthquake and tsunami on the (per-capita) gross domestic products (GDP) of five mostly affected countries, namely Indonesia, Sri Lanka, Thailand, India and Maldives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.